skip to main content
US FlagAn official website of the United States government
dot gov icon
Official websites use .gov
A .gov website belongs to an official government organization in the United States.
https lock icon
Secure .gov websites use HTTPS
A lock ( lock ) or https:// means you've safely connected to the .gov website. Share sensitive information only on official, secure websites.


Search for: All records

Creators/Authors contains: "Eckford, Andrew W"

Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher. Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?

Some links on this page may take you to non-federal websites. Their policies may differ from this site.

  1. The T cell receptor (TCR) is a key component of the adaptive immune system, recognizing foreign antigens (ligands) and triggering an immune response. To explain the high sensitivity and selectivity of the TCR in discriminating “self” from “non-self” ligands, most models evoke kinetic proofreading (KP) schemes, however it is unclear how competing models used for TCR triggering, such as the kinetic segregation (KS) model, influence KP performance. In this paper, we consider two different TCR triggering models and their influence on subsequent KP-based ligand discrimination by the TCR: a classic conformational change model (CC-KP), where ligand-TCR binding is strictly required for activation, and the kinetic segregation model (KS-KP), where only residence of the TCR within a close contact devoid of kinases is required for its activation. Building on previous work, our computational model permits a head-to-head comparison of these models . While we find that both models can be used to explain the probability of TCR activation across much of the parameter space, we find biologically important regions in the parameter space where significant differences in performance can be expected. Furthermore, we show that the available experimental evidence may favor the KS-KP model over CC-KP. Our results may be used to motivate and guide future experiments to determine accurate mathematical models of TCR function. Published by the American Physical Society2025 
    more » « less
    Free, publicly-accessible full text available April 1, 2026
  2. Free, publicly-accessible full text available January 1, 2026
  3. Information theory can be used to describe the gain of evolutionary fitness that an organism obtains from sensing, processing, and acting on environmental information. This paper considers the fitness value of subjective information, i.e., the context-dependent value of different kinds of information. A simplified model is given in which the organism requires two essential nutrients, and can prioritize sensing for one or the other. It is shown that a subjective strategy, in which the organism prioritizes a less abundant nutrient for sensing, leads to higher fitness than a balanced strategy, in which total information is maximized and the meaning of the acquired information is disregarded. Using this model, the fitness advantage of subjective information admits an analytical solution, and it is shown that subjective information is more advantageous when the organism's knowledge of the environment is less precise. 
    more » « less
  4. Patil, Kiran Raosaheb (Ed.)
    The evolutionary consequences of quorum sensing in regulating bacterial cooperation are not fully understood. In this study, we reveal unexpected effects of regulating public good production through quorum sensing on bacterial population dynamics, showing that quorum sensing can be a collectively harmful alternative to unregulated production. We analyze a birth-death model of bacterial population dynamics accounting for public good production and the presence of non-producing cheaters. Our model demonstrates that when demographic noise is a factor, the consequences of controlling public good production according to quorum sensing depend on the cost of public good production and the growth rate of populations in the absence of public goods. When public good production is inexpensive, quorum sensing is a destructive alternative to unconditional production, in terms of the mean population extinction time. When costs are higher, quorum sensing becomes a constructive strategy for the producing strain, both stabilizing cooperation and decreasing the risk of population extinction. 
    more » « less
  5. null (Ed.)